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We consider the task of identification of a cluster structure in random networks. The results of two methods
are presented: �i� the Newman algorithm �M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113 �2004��;
and �ii� our method based on differential equations. A series of computer experiments is performed to check if
in applying these methods we are able to determine the structure of the network. The trial networks consist
initially of well-defined clusters and are disturbed by introducing noise into their connectivity matrices. Fur-
ther, we show that an improvement of the previous version of our method is possible by an appropriate choice
of the threshold parameter �. With this change, the results obtained by the two methods above are similar, and
our method works better, for all the computer experiments we have done.
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I. INTRODUCTION

Relations between elements of many sets in the world can
be described with networks. Definition of a network involves
the indication of nodes and of relations between them. Nodes
of the network are simply elements of the set and edges
reflect relations between them. The simplest realization is
based on zero-one information, i.e., it is only possible to say
whether a given two nodes are mutually connected or not.
However, if it is possible to get information on how strongly
any two elements are connected to each other, the knowledge
about the structure of the so-called weighted network is more
complete. Further, networks can be used for a system de-
scription at different levels. All of us can be seen as elements
of the network of our relatives. We are also connected with
people in our workplace, and the companies usually are con-
nected to each other �1,2�. Looking into our bodies, it is clear
that their proper functioning is possible thanks to the exis-
tence of metabolic, protein, and gene networks �3–6�.
Thanks to these complex networks each structure of our bod-
ies fulfils its function. The method of establishing weights of
edges between nodes �e.g., companies, people, genes� of any
network does depend on the network origin. In the case of
social networks the weights can reflect the intensity of con-
tacts between given elements. In the case of biological net-
works, such as gene or protein networks, weights of edges
are calculated on the basis of the measurements of the level
of their expression in the cells of organisms. Independently
of the origin of the network, weights of edges can be ex-
pressed via real values from the range �0,1�. Weight value
equal to zero indicates that two nodes are completely discon-
nected, whereas value equal to one indicates the case of the
full connection of two nodes.

Regardless of the type of the network, usually it is pos-
sible to distinguish clusters �communities� in the whole net-
work. The question of the definition of the cluster is prob-
lematic, but usually it is understood as a community of
densely connected nodes, which are only sparsely connected
with nodes in other clusters �7–10�. Finding clusters in the

network is a very common problem in many different areas.
There exist several different methods which allow for the
network division into clusters in accordance with some rules.
The algorithms can be classified in a different manner de-
pending on the criterion used. Some algorithms identify
nodes with the clusters, so at the beginning the number of
clusters is equal to the number of nodes of the network. In
this case the task is to join some clusters to each other, in a
certain manner. Such algorithms are called agglomerative.
Some other algorithms run in the opposite direction, i.e., the
rules lead to successively erasing the links of the network.
This kind of algorithm is named divisive. These two algo-
rithms are known as hierarchical �11–13�. Another classifica-
tion is based on the analysis of local or global properties of
the network. The difference lies in the number of links af-
fected by allocation of nodes into clusters �14,15�. In the
local case the change of state of an edge connecting nodes i
and j depends on weights of edges connecting those two
nodes with a few nodes which are its neighbors. In the global
case, the state of edge ij depends on all remaining edges in
the network.

The quantity which is usually used for indication of the
proper division of the network is the modularity Q, intro-
duced by Girvan and Newman �11�. This quantity is large if
there are many edges between nodes within the communities
and only a few between nodes from different communities.
There are some algorithms which are based on modularity
calculations but introduce some modifications to the New-
man algorithm, which allow for more efficient calculations.
Such modification is an important feature in the case of
analysis of large networks �16–18�. Further criteria of the
algorithm’s quality are the maximal modularity for a given
network �e.g., Zachary karate club �8�� or the number of
nodes classified correctly to their communities �19�. Some
authors apply another approach for identification of commu-
nities in the network, based on some local quantities, taking
into account internal and external degrees of the nodes
�17,19–21�, which is motivated by the resolution limit of the
modularity �7�.

Another group of algorithms is based on the analysis of
the spectral properties of the network, through the eigenvec-
tors of the Laplacian matrix �8,13� or on some physical prin-
ciples, e.g., Potts model �9� or Kirchhoff equations with*gos@fatcat.ftj.agh.edu.pl
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edges of a network as a resistor �18�. An interesting feature
of the Potts model is its ability to detect the overlapping of
the communities. The algorithm proposed in Ref. �22�, based
on the fitness calculation, enables such kinds of analyses,
simultaneously rendering hierarchical community structure.

The approach proposed here is different from the algo-
rithms mentioned above because we apply a dynamics con-
tinuous in time: the weights of all edges evolve simulta-
neously. In this way, there is no information loss which is
due to the random selection of the order of updating nodes.
On the other hand, the program is supposed to work rather
slowly in the case of large networks. The advantage is that
for most investigated networks, the proper structure is repro-
duced with larger probability than for other algorithms.

Irrespective of the algorithm used, the most important
question is whether the obtained division is correct. In fact, a
response to this question is possible if obtained communities
can be interpreted thanks to knowledge about analyzed net-
works. Even if similar results are obtained from different
algorithms, it should not be understood as a proof of the
correctness of the obtained division. To evaluate the perfor-
mance of a given method, it should be applied to networks
with the structure known a priori. Such networks are to be
designed for the purposes of computer experiments. If the
original, well-defined structure of a network is somehow dis-
turbed, the question is if this initial structure can be recon-
structed with the given algorithm.

In this paper we compare the results obtained within two
clustering algorithms: the Newman algorithm �11� and our
method based on differential equations �23�, with respect to
reconstructing the original structure of the designed net-
works. Both algorithms are described in Sec. II. Section III
includes the results obtained by these algorithms for different
sizes of networks.

II. ALGORITHMS

The choice of the algorithms used was motivated by the
results shown in Ref. �23�. The first algorithm used is the
well-known Newman algorithm based on the analysis of the
modularity Q �8,24�. This approach was adapted for the case
of the weighted network, and the formula for Q is as follows:

Q =
1

2m
�
ij
�wij −

kikj

2m
���ci,cj� , �1�

where wij—weight of the link between node i and j �wij
� �0,1��, ki—weighted node degrees, m= 1 / 2�ijwij and

��ci,cj� = �1 when i and j are in the same cluster

0 otherwise.

Apart from the knowledge of the weight of edges of the
networks, the calculation of the modularity Q also involves
information about the current structure of the network, which
depends on the algorithm used. The structure of the network
is defined as the clusters identified so far by the clusteriza-
tion algorithm.

The Newman algorithm is an example of the agglomera-
tive algorithms. Here, the method is to join those clusters in
which the obtained value of Q is maximal at each iteration.
This algorithm yields to the formation of one large cluster,
including the whole set of nodes. The division is established
at the partition where the value of the dependency of Q to the
iteration step reaches the highest value.

In this algorithm the considered state of the system de-
pends on the nodes belonging to the same cluster, and con-
nections to the rest of the network are neglected.

In the case of the differential equations method �DEM�,
proposed by the author in Ref. �23�, at each iteration the
values of the connectivity matrix elements evolve due to the
interactions between nodes in the whole network. The rate of
change of the Aij is given by

dAij

dt
= G�Aij� �

k�i,j
�AikAkj − �� , �2�

where Aij is an element of the connectivity matrix, G�x�
=��x���1−x�, � parameter.

The structure of the network at the given iteration step
forms the basis for the calculation of the parameter Q �Eq.
�1��. Because we are interested in the finding of the subnet-
works in the initial network, and not in the network obtained
because of the change of the connectivity matrix, the value
of Q is calculated according to the values of the initial con-
nectivity matrix.

The used algorithm, applied to weighted connectivity ma-
trix A, can be summarized as follows: �i� Calculation of the
new value of Aij for all Aij � �0,1�, according to the Eq. �2�,
which means actually that if the weight of the edge reaches
value 0 or 1 it is not changed anymore; �ii� Identification of
the actual structure of the network, which varies because
during evolution some values of Aij decrease to 0; �iii� If the
number of clusters differs from the one in the previous simu-
lation step, calculation of the modularity Q with the network
structure given by �2� with original weights of edges; �iv�
Return to point �i�.
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FIG. 1. Results for N=85 �a� and N=110 �b� nodes, and differ-
ent values of �.
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FIG. 2. Results for clusters of equal sizes: �a� N=68, clusters of
34 nodes, �b� N=72, clusters of 24 nodes �symbols denote: �, the
Newman algorithm; �, Eq. �2� with �=0.25; �, Eq. �2� with �
=0.4�.
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At the end of this procedure the dependence of the Q
value from the number of clusters �and nodes belonging to
each of them� is obtained. The division where the value of Q
is maximal is accepted as the optimal division of the network
into clusters.

The time of the Girvan-Newman algorithm is
O��M +N�N� �25� �where N is the number of nodes, and M is
the number of edges�. In the case of DEM the time of each
simulation step is O�N3�.

III. RESULTS

We present the results obtained from a series of computer
experiments which were performed as follows. At the begin-
ning the network consists of a given number of fully con-
nected clusters of the same size, without connections be-
tween them. The connectivity matrix is symmetric, with
element Aij equal to 1 if there is a link between nodes i and
j, elsewhere Aij is set on 0. The aim of the calculation is to
check if the applied clustering algorithm can reproduce the
initial structure of the network if all connectivity matrix el-
ements are disturbed by random numbers. In other words, for
each connectivity matrix element a random number �ij is
chosen from the range �0,��. Once an element Aij =1, its
disturbed value is set to 1−�ij, otherwise Aij =0 is changed to
�ij. The disturbed matrix remains symmetric.

In our previous work the value of � in Eq. �2� was set to
0.25 �see �23��. Now we check how the results depend on the
value of this parameter. Below we compare the results ob-
tained from the Newman algorithm and from our method
with two values of parameter �, for the same networks. The
results shown below are checked to be robust for the applied
values of the numerical timesteps in Eq. �2�.

In the real world the case of equal size of clusters is not
generic. So, the results for networks with initial structure
composed on randomly chosen number and sizes of clusters
are also presented.

All presented results �except the results in Sec. III A, see
below� are averaged over 50 realizations of the network. For
all figures the notation is N, number of nodes; �, amplitude

of the noise; P, probability of reproduction of the initial
structure of the network. The symbols in figures denote: �,
the Newman algorithm; �, Eq. �2� with �=0.25; �, Eq. �2�
with �=0.4.

A. Estimation of the best value of �

In Fig. 1 the results on P as a function of � are shown
�averaged over three different partitions of the network with
given size, for each partition results are averaged over 20
realizations�. Exact position of the particular curves depend
on particular partition and size of the network, but as a rule it
can be realized that better results, i.e., higher percentage of
the reproduction of initial structure for higher values of
noise, are obtained for values of � larger than approximately
0.3. Because of that for further computer experiments the
value of � was set to 0.4.

B. Comparison of the results for two different values
of � for clusters of equal sizes

As it was shown in �23�, for some cases the Newman
algorithm based on modularity calculation works better than
the algorithm based on differential equations. But, as can be
seen from Figs. 2�a� and 2�b� if a higher value of � is used
�in this case �=0.4�, the results obtained within two methods
are equivalent. For other cases presented in �23�, where Eq.
�2� worked better, an increase of � does not change the re-
sults qualitatively.

C. Clusters with different sizes

In the case when the number of clusters is as small as two,
and if the difference between the clusters sizes is not very
large, the Newman algorithm works well. Comparable re-
sults are obtained from Eq. �2� with �=0.4. If a smaller
value of � is used, the probability of the reproduction of the
initial network structure is remarkably smaller �Figs. 3�a�
and 3�b��. The situation changes if sizes of the clusters are
significantly different �Fig. 3�c��. In this case, DEM with �
=0.4 works much better than the Newman algorithm. Also in
this case, the enhancement of the parameter � results in the
method working well for a higher value of noise.

If the number of clusters increases to three and the net-
work is divided into clusters with approximately equal sizes,
the Newman algorithm and Eq. �2� for both tested values of
� return results which are similar �Fig. 3�d��. In the case
when the sizes of the clusters are significantly different,
DEM with �=0.4 works much better than the Newman al-
gorithm �Fig. 4�a��. The information we get from Figs.
4�b�–4�d� is that if the number of clusters is higher than
three, the differential equation method works better than the
Newman algorithm.

To check if this is actually the rule of used algorithms it is
convenient to introduce some quantity which can describe
the size distribution—the fragmentation coefficient F:

F = �
i
	ni

N

2

, �3�

where ni is the size of the cluster and N is the number of the
nodes.
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FIG. 3. Results for clusters of different sizes: �a� N=96, clusters
of 44 and 52 nodes, �b� N=130, clusters of 77 and 53 nodes, �c�
N=84, clusters of 65 and 19 nodes, �d� N=110, clusters of 38, 30,
and 42 nodes �symbols denote: �, the Newman algorithm; �, Eq.
�2� with �=0.25; �, Eq. �2� with �=0.4�.
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Another characteristic quantity which can be useful here
is the value of the amplitude of noise � for which the prob-
ability P of the reproduction of the initial cluster structure
reaches value 0.5. Below this level of noise is denoted as
��0.5�. If the network is divided into two clusters of very
different sizes, in accordance with results presented above,
for some cases the value of ��0.5� decreases to zero indepen-
dently of the algorithm used �Fig. 5�a��. Similar effects are
discussed in �7�. For cases where differences in the sizes of
clusters are not very large �smaller values of F� both algo-
rithms seem to work with similar accuracy. This conclusion
changes if the number of clusters is higher. As can be seen in
Fig. 5�b�, the value of ��0.5� varies in the range of approxi-
mately 0.6–0.9 for all analyzed networks if the differential
equations algorithm is applied, whereas for the Newman al-
gorithm this dispersion is much higher.

IV. DISCUSSION

It was shown in our previous work �23� that in the case
�=0.25 and for a small number of clusters, the Newman’s

algorithm works better than Eq. �2�. Here we demonstrate
that once the value of � is changed from 0.25 to 0.4 or more,
our algorithm is never worse. At present we have no argu-
ments to distinguish between any value of � larger than, say,
0.4. This point remains to be clarified in the near future. Our
tests made for networks with different sizes of clusters show
that the Newman algorithm enables the reproduction of the
real structure of the noisy network if the number of clusters
is small �two or three� and the difference in cluster size is not
very large. We show that in the cases where there are a few
clusters with different sizes, the differential equation method
works well, even if the amplitude of the noise is as high as
0.8. We decided to use as a criterion of network division
analysis of the value of modularity; because it is used in
many models. It would be interesting to make a similar
analysis using the fitness parameter �22� instead of modular-
ity.

In conclusion, for all analyzed networks, the method
based on differential equations with an appropriate choice of
the value of parameter � works better than, or at least as
good as, the Newman algorithm.
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FIG. 4. Results for clusters of different sizes: �a� N=110, clus-
ters of 50, 48, and 12 nodes, �b� N=130, clusters of 22, 34, 11, 10,
and 53 nodes, �c� N=130, clusters of 19, 60, 45, and 6 nodes, �d�
N=110, clusters of 18, 22, 30, 38, and 2 nodes �symbols denote: �,
the Newman algorithm; �, Eq. �2� with �=0.25; �, Eq. �2� with
�=0.4�.
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FIG. 5. ��0.5� against the fragmentation coefficient: �a� 2 clus-
ters, �b� 4 clusters �symbols denote �, the Newman algorithm; �,
Eq. �2� with �=0.4�.
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